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The paper investigates the motion of a gyrocompass with random displacements 
of its point of support, which takes place In the rolling of ships, the vibra- 
tion of the instrument base and in other cases. Under these conditions, the 
acceleration of the point of support of the gyrocompass represents a random 
vector function of time and the motion of the gyrocompass will be described 
by a system of linear nonhomogeneous differential equations with random coef- 
ficients and random right-hand sides, i.e. under these conditions the gyro- 
compass represents a system with random parametric excitation under the action 
of random external forces. 

i. In the derivation of the equations of motion of the gyrocompass for 
the case under consideration, we shall proceed form the general equations of 
motion of a gyrocompass, obtained by Ishllnskll [1], which can be written In 
the following form: 

2B cos  (8 - -  6) [ - -  (V/B) (s in  ct t s i n  ~ - -  cosczl  s i n  13 cos  7) - -  (at" 4-  Q) cos  ~ cos  7 - -  

- -  ~" s i n  T] = l m  W t  ° s i n  ~x 1 cos  ~ - -  l m  W2 ° cos  a 1 cos  l~ - -  l(mW3 ° _,L p)  s in  ~ - -  M_*_ 

2B cos  (e - -  6) [(V/R) (s in  a 1 cos  "r + cos  ¢z I s i n  ~ s in  "r) - -  ((x" @ ~ )  cos  ~ s i n  ~ ~- 

-~  ~ cos  ~1 = M~j* (1.1) 

[2B cos  (s - -  6)]" = l m  W t  ° (cos cq cos  7 - -  s i n  czl s in  ~ s in  "r) + 

+ l m  W2 ° ( s i n c q  cos  "r + c o s o q  s i n  ~ s i n  ~) - -  l (roW3 ° -t- P) cos  1~ s i n  7 + Mz* 

2 B s i n  ( s - -  6) [(V/B) eos(z l e o s ~ +  ( ~ 1 " +  Q) s i n ~ @  T'] = × s i n 6 c o s 6 - -  Mm* 

Above, a mot represents differentiation with respect to time. 

Equations (1.1) describe the motion of the gyrocompass relative to a sys- 
tem of coordinates go~oC , oriented so, that one of the horizontal coordi- 
nates (go-aXls) is dlrect~d along the horizontal component V of the abso- 
lute ship velocity. The C-axls is directed upwards along the radius of the 
Earth globe. The coordinates of the axes go and ~o are turned wlth respect 
to the geographic axes g and ~ (oriented, respectively, towards east and 
north) by an angle ~ , found from 

v x R U c o ~ - { -  v E V = l / ( R U c o s ~ 4 -  v~)~ F ~x 2 (i.2) s i n ~  = - V - ' "  c o s o  
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180 L.la. Roltenberg 

}[ere, R is the distance of' the point of support of the gyrocompass from 
the center of the Earth, U is the angular velocity of the daily rotation 
of the Earth, ~ is the latitude of the point of observation and vj and 
are the eastern and northern components of the relative ship veloclty, ~\ 

Let al, ~ and 7 denote Euler's angles, which determine the position 
of the gyrosphere relative to the coordinate trlhedron ~o~e~ , aL denote 
the angle of rotation of the gyrosphere about axis C , B the angle of 
rotation about the negative direction of x*-axis (nodal line) and y the 
angle of rotation about the z-aacls rigidly connected to the gyrosphere. Angle 
a , the rotation of the gyrocompass in azimuth, considered relative to the 
northern direction, will thus be 

The z-axis is directed along the blsectrix of the angle, formed by the 
axes of the gyroscope rotors, while x and y denote axes rigidly connected 
to the gyrosphere, x being in the equatorial plane of the gyrosphere (i.e. 
in the plane formed by the axes of the gyroscope rotors) and F directed 
upwards along the normal to the equatorial plane. 

Let ¢ -- 6 denote the angle between the axis of the rotor of one of the 
gyroscopes in the gyrosphere and the z,eocls of the gyrosphere. The rotor 
axis of the second gyroscope is sy-n~metrically placed. The axes of the gyro- 
scope casings are interconnected by an antiparallelogram. In the state of 
equilibrium, when the gyroscope rotors do not gyrate, the angle between the 
rotor ax@s is equal to 2¢ , therefore 6 represents the angle of precession 
of the gyroscopes relative to the gyrosphere. 

Let W~ , W, ° and Ws° be the components of acceleration of the gyrocom- 
pass point of support along axes ~o, ~o and C , respectively. In their 
determination it must be remembered that in the problem under consideration 

The projection of the instantaneous angular velocity of the coordinate 
trihedron ~o~oC on the C-axis, is denoted by 0 , where 

Let B denote the individual kinetic moment of each of the two gNWroscopes 
installed in the gyrosphere. 'i~e coefficient x in the fourth equatlo n of 
(i.I), determines the stiffness of the springs connecting the g~vroscope 
casings with the gyrosphere. ~he quantities m and p represent, respec- 
tively, the mass of the gyrosphere with all its internal elements and the 
attraction force acting on it, while ~ is the distance between the center 
of g~avity of the gyrosphere, situated on y-axis, and its geometric center, 
i.e. the point of support of the gyrocompass. 

The moments of all the other external forces, not taken into account in 
Equations (i.I), about the axes x, ~ and ~ , rigidly connected to the 
gyrosphere, are denoted, respectively, by #**, W~* and ~,*, while W~ * 
represents the moment of these forces relative to the axis of the gyroshope 
casing, about which the angle of precession 6 is read. 

We shall now modify the system if equations (I.i). The first equation of 
(i.i) is multiplied by cos y , the second equation by. sin v and the two new 
equations are added. Further, the first equation of {1.1} is multiplied by 
- sin y , the second by cos y and the equations added again. ~ubstltutir~ 
the first two equations of (I.i) by the above two new equations, we get the 
equivalent system of equations 

2B co~ (~ - -  6) I (V/B)  c o s ~ t  ~i,, p - -  ( ~ / +  ~)  cos ~ l  = l m  IV,  ° s i l l  ~ ,  cos ~ cos ~ - -  

- -  ]lll II'.: ° COSal CO+ ~ COS T - -  I (mll+3 ° + P )  s i l l  ~ COS T - -  M x :  

2B cos (e - -  6) ((I ' /H) ~i~+ ~+ + ~') ~ - -  lm If+, ° s in  ml cos  ~ Sill T + 

2 .  Im II'+ + cos t a ,  cos  ~ s in  ~ + l 0nlV+ ° + 19 s in  ~ s i n  T + Mu~ 

121t cos (+ - -  6)}' ----- ]m l l x  ° (co~mi cos  T - -  ~in mt s in  ~ s in  ~) + l m  tVi  ~ (s in  m, cos  T + 

-~- cos  ~ t  ~in ~ Sill ~) - -  l ( m | | ' 3  ° + P)  COS ~ s in  T - r  Mz* 
2 B s i n  (e - -  6) [0710 c o s a t  c o s ~ - ~ -  ( ~ x ' +  Q) s in  ~ + T] = × s i n 6 c ° s S -  3Iu; (LS) 
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where 
M * .  = M x *  cos  3" - -  Mu* s i n  T, M y ,  = Mx*  s in  7 - i  M~*  cos  T (1.6) 

Since the axes x and y are turned relative to x* and y* by an 
angle y , measured counterclockwise from x*-axls it follows from (1.6) that 
M*_. and M** represent the moments of the above mentioned exter~l forces 

abo~t axes Ux* and y* . 

Considering now Equations (1.5) and noting that )$U cos is very much 
larger than v E and VN, we shall substitute (1.2) and (1.~) with the fol- 
lowing approximate relations: 

V ~ B U c o s %  ~ 0 ,  q) ~ cons t ,  Q ~ U s inq )  (1.7) 

When the base is at rest with respect to the Earth, the acceleration com- 
ponents, of the gyrocompass point of support, along axes E, ~ and ~ are 

V2 
W i  ° = 0, W2 ° = VQ = B U  2 Sillq~ COS q), lVa ° ' -  R - -  - -  R U 2  c°s2 q~ (1.8) 

It can therefore be assumed, that with random displacements of the gyro- 
compass point of support 

W1 ° =  14q, W2 ° =  R U  2 s i n q ~ c o s q ~ +  W2, Wa  ° = - - R U 2 c ° s 2 q ~  W3 ( t .9 )  

Here, W t , W a and Ms are random processes with zero mathematical expec- 
tations. 

In normal gyrocompasses, the spring stiffness ~ is several times larger 
than in horizontal gyrocompasses. Therefore in gyrocompasses (even with 
v<=~0) ballistic deviations take place. To minimize them, the parameters 

of the compass are chosen to satisfy the condition 

2 B c o s  (e -- 8") = l m  R U  cos q) ( I .10)  

where 6" is the value of the angle 5 for the case of the stationary motion 
of the gyrocompass, installed on a base fixed with respect to the Earth. 

When condition (l.lO) is satisfied, according to (1.4), (1.5) and (1.8), 
the position of equilibrium of a gyrocompass on a fixed base with respect to 
the Earth, for the case when 3fx*= AIu*~ 31z* ~ 21~*----0. will be given by 

a ,  ~ ~ = 1' = 0, (3 = 6* (1.11) 

where 6" satisfies the following relation, obtained from the fourth equa- 
tion of (1.5) 

2B .~in (~ - -  6*) U cosq:  ---- × s i n  8"  cos  6" (1.12) 

Now, denoting 
61 = 6 -- 6* (1.13) 

and restricting the study to small vibrations of the system, about the equl- 
librium position, we shall consider angles a:, 8, y and 61 to be small. 
In this case, keeping only the terms of the first oeder of magnitude, we 
obtain the following relations: 

2B cos  (~ - -  6) = EL + F-281, 
[2B cos  I~ - -  ~ ) ] ' =  ~.~61" (1.14) 

2B sin (e -- 6) ---- -2 ~ --~,61, 

:¢ s in  6 cos  6 = × s i n  6" cos  6"  -~- (× cos  26*) 6t 

where 
~'1---- 2B cos  (a - -  6*),  $ 2 =  2 B s i n  ( ~ - -  6") (1.15) 

Assuming, further, that 
p - -  taBU 2 cos  2 q) ~ P ( t . t 6 )  

denoting g IP ( l m  B U 2 cos  2 q) -4- × cos  2~*) 
v~ - -  R ' is2 ~__. Ez 2 ( 1 . 1 7 )  
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(note [2], that in normal gyrocompasses ~ ~ 5v) and, introducing new varia- 
bles 

x, = U cos q~ al, x s =- ~, x:~ == T, x4 = (.~'~/E1) U cos q~8 l (1.18) 

we obtain according to (1.5) the following differential equations, describing 
the motion of the gyrocompass with random displacements of its point of support: 

dx t 1 ( t ) 1 
dt q- R U  cosq~ W l x l  - -  vs + "-R Wa x2 + ~x4 = --~ W~ + Yt (t) 

( ) dx s ~t' 
dX2d'-}- "~ x l -  fl ÷ RUtcosq)  W2 x3 = Y2 (t), - ~ &  ~ x ~ - - ~ y  x~ =:: y~(t) 

d-T- -  ~ ~" R U c o s g  W~ x~-~- v s ~ -R-W~ x 3 = - - R - W ~ - - ~  y~(t) (t .19) 

where 
1 1 

y~ (t) - -  lm R Mx '* '  Y2 (t) - -  lm B U  cos V My** 
0.20)  

t t 
Y3 (t) - -  ~ My,*,  Y4 : lm R M z* 

The system (i.19) represents a system of linear differential equations 
with random coefficients and random right-hand sides. 

2. In the case when, in addition to the forces clearly indicated in Equa- 
tions (I.i), there are no additional external forces applied to the gyroscope 
we must assume in Equations (1.1) 

Mx* = My* = Mz* ---: M y *  = 0 (2.1) 

It follows that 

y~(t) _=- 0 (i = 1 . . . . .  4) 

Assuming that conditions (2.1) are satisfied, ar~ denoting by k the 
small parameter contained in Equations (1.19) k - ~o/R , where R e is some 
normalizing coefficient, satisfying, for example, the cor~dition 

l W i l m a x / R O =  t , , c  -s, 

we can express Equations (i.19) in the following form: 

dx t ~ (  t t ) 1 
d'---/-- vsx2 + fix4 + RoU~os $ IVlXl -- ~ W3x2 = k ~ W2 (2.2) 

dx~ I dx a , ~2 
d---i" -~ z l  -- ~x3 -- k RoU cos V W2x3 = O, d---[ -r- ~x~ -- -~- x~ = 0 

dx4 k t t 

We shall write the system (2.2) in matrix form 

dx 
d--T + ax = -- Xy (t) x + kz(t) 

Here 

xl t 
2£ 2 

X 4 

t 

t 0 - - Q  

0 f~ 0 - -  1~ 

- -  ~ 0 v 2 

s l W  1 - -  s 2 W  ~ 0 0 II 
0 0 - -  SlW~ 0 

y (t) = 0 0 0 0 ' 
- -  sllV 2 0 s2W~ 0 

z ( t )  = iiSWHOo 
$2~/1 

(2.3) 

(2A) 
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and t 1 
s~ - -  R o U  eos (~  , s 2 - -  R, (2 .5)  

From Equation (2.3) we can, in the usual way, obtain the matrix integral 
equation 

t 

x (t) = / V  (t) x (0) @ )t I N (t - -  17~) z (17~) d171 - -  ~t I N (t - -  17~) y (171) x (TI) dT 1 (2.6) 

0 o 
where N (t) : II'N~k (t) [] (/, k ~ t ' ,  . . . .  4) is the matrix weight function for the 
homogeneous matrix differential equation 

dx/dt ~ ax : 0 (2.7) 

Corresponding to the differential equation (2.7), the characteristic 
Equation 

has two pairs of imaginary roots 

Pl,  22 = ~ i(01, P3, p4 = ~ ie2  

The function 

where 

N~ (t) - 

Njk  (t) in Equation (9.6) can be represented as [2] 

~,lTjk(1) T3k (~) cos  (o2t f o r  -4- - - -  cos co~t + e~- i k 2m 

t t 
N j ~  (t) : e-~- Tik (1) s in  co d - -  e-~ TJ k(2) s i n  ¢02t 

m is a positive integral number. 

for / - ~ k  : 2 m - ~  1 

H e r e  e s = o )  s ( o ) 2 ~ - o 1 2  ) ( s =  t ,  2) ,  

Tn(s) : ¢%3 __ (p2 -t- ~2) % ,  

T21(s) 

Tal(s) 

T41 (s) 

T13 (s) 

T23 (s) 

Taa(s) 

T43(s) 

= ¢%2 -4- t22~2/v 2 - -  ~ ,  

= __ ( ~  + 2 ~ 2 / ~  2) % ,  

= - -  2(D82 - -  2V 2 ~-- 2 3, 

= __ 2Q'V2COs, 

= __ ~ (os2__  Q~2 4-  23,  

= % 3 _ _ ( v ~ +  2~)%, 

and the functions Tj~: (s) (s = 1, 2) a r e  

T12 (s) = __ "V2{Os2 - -  22V2 ~-  ~2V2 

T22(s) = (0s3 -- (~t 2 -@ ~2)0) s 

T32(s) = ~Os2 ~_ Q~t 2 - -  ~3 

T42(s) = __ 2~v2(os 

TI~(s) = 2 ~ s 2 - -  ~- 21 x 2 -  ~ 

T2tS)  = - -  ( ~ - ~  ~}t2/V 2) m s 

2 2 2 --~ T34(s) = - -  (0 s~t /~  - -  ~2 ~ =  

T44(~) = (%3 __ (v2 + 22) ¢% 

(2.8) 

The solution of the matrix integral equation (2.6) can be found by suc- 
cessive substitutions [ 3 ] .  

Denoting 
t 

F (t) = N (t) x (0) + i I N  (t - -  T I )  z (T1) dTt (2.10) 

o 

we can bring Equation (2.6) to the form 
t 

x (t) = F (t) - -  ~ I N (t - -  171) Y (T1) x (T1) d~l  ( 2 . t l )  
0 

From (2.11) it follows that 
Tl 

x (Tt) = F (171) - -  F I N (~1 - -  172) Y (~2) x (T2) d~2 ( 2 . t 2 )  

0 

(2.9) 
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Substlttltlng into 42.11) the expression (2.12) o f  x ( ' r ,  ) , we obtain 

t ".! 

:~ (t) := F (t) - -  ~. f m (t - -  "q) v ( r 0  [~" ('q) - - ~ ' l  N ( 'q - -  T,) V (r,) • ( '~) d r , ]  d ' q  (2AS) 
0 0 

Substituting x(~s) ~r*to (2.13) with an expresalon analogous to (2.12), 
a n d  r e l m a t ~ g  t h e  d e s c r i b e d  p r o c e s s ,  we c a n  r e p r e s e n t  t h e  s o l u t i o n  o f  t h e  
i n t e g r a l  e q u a t i o n  ~ 2 , 6 )  i n  t h e  f o r m  o f  an  a b s o l u t e l y  and  u n i f o r m l y  c o n v e r g i n g  
series [3], w h i c h ,  £n the present problem, will be a power series wlth a 
small parameter ~ oo 

z (t) = ,~'(t)-r- ~ V,,.(t) (2. i4)  
1"1.31 

where t ":t "~n--I 

Vn ( t ) =  ( - - t ) n ~ . n S l . . .  f N ( t  - -  r t )  N (T t  - -  T , )  . . . 

0 0  0 

• . . N (Tn_ * -- Tn) :t (r,) . . . V (rn) F (rn) dr,.., dr n (2.15) 

RestrilctIng ourselves to terms not higher than of second order of small 
magnitude, we can represent the solution (2.1~) In the form 

t t "q 

I 
0 0 0  

t t "r~ 

~-I I N ( t -  r l ) Z  ( T I ) d T  1 - -  ~ '  I I Q (t, Tt, T2)a l to  dT  1 (2.t6) 
0 0 0  

w h e r e  
(L, T~, r ~  = N (t - -  n )  v (%) N ( n  - -  T2) V (T2) N' (%)  

O (t, %, h )  = N (t -- r l )  V (%) N (%-- %) z (to) (2.17) 

With zero inltial conditions z k (0) = 0 (k = I, . •., 4) the elements of the 
matrix (2.16) wI11 have the form 

t 

x j ( t )  " ~.s..,l [:Vjl (t - -  r , )  IV 2(r*) + Nj4 ( t - -  r ,)  IV x (zl) ] d r ,  - -  
0 

t ",l 

_ ~ . 2 1 f  Q J ( t ' ' q ' r ' ) d r o d ' q  ( / =  t . . . . .  4) (2.18) 
0 0  

where 
Qj(t ,  T,, Tz) -= s t s ~ N y  1 ( t  - -  xt) N,4 (x, - -  Tz) W x (*x) W ,  (T2) - -  

- -  s is  t [Nj4 (t - -  TI) N I l  (T 1 - -  T1) -~  N i t  (t - -  *1) Arsl (Tt - -  TI)] W2 (Tt) WI  (1;a) n u 

-I" s ls2 N i l  ( t  - -  Tt)  N i t  (T  t - -  T2) W x  (Tt) W~ (Ts) - -  

- -  $155 [ N j 4  ( t  - -  r l )  e l 4  (1~ 1 - -  %) Ju  N}2 (t - -  T1) N34 (T 1 - -  Tt)] W ~  (T1) W I  (Tt) - -  

- -  st t [ N i l  (t - -  "rl) N24 (T t - -  T2) - -  N~4 (t - -  x,) Ns4 (T t - -  r2)] IV s (ix) Wt  (*2) - -  

- -  St tt [N]I (t - -  t l ) / V i i  (T t - -  "t'2) - -  NBi (t - -  TI) N3I (T t - -  r2)] Ws (Tt) W2 (r,)  

( / =  t . . . . .  4) (2.t9) 
$1flce the mthe lmt t tcL l  expeot~t lof la  of  fAle random processes k't ( t )  ( t "  1. 

2, 3) are equal to zero. we oan reprel lmat the msthemst;lesl e x l p e e t a t ~  o f  
the ralrldoal proaesses x~ (~) • whloh d e ~ e  the posXtion o f  the ~ O O ~ , l s .  
i n  the fo l lowl f18 form: 

U [ z j  (t)] = - -  g '  ".~ ~ M [ 0 j  (t., -rt, r , ) ]  d r ,  d ' q  ( / =  t . . . . .  4) (2.20) 

0 
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M [ Qj (t, .q ,  %)] - -  sis ~ N i l  ( t  - -  Xl) N14 (x l  - -  x2) K n  (~'1 - -  ~'~.) - -  
sls~ [Nj4 (t - -  xl) N n  (xl - -  x~) q-- Nj~ (t ~ xl) Ns l  (xl - -  x2)] K ~  (xl - -  ~'~) -l- 

-t- s ls2Nja (t - -  x l )  N n  (xl  - -  x2) K ~ .  (xl  - -  %) - -  sis.. IN j ,  (t - -  xt) N14 (xl  - -  x.,) q -  
--~ Nj~ (t - -  "q) N34 (x l  - -  xo)] KI~ (x~. - -  1:1) - -  

- -  s2 ~ [Nja (t ~ %) N~_~ (x 1 ~ %) - -  Nj~ (t - -  xl) Na~ (xl ~ x~)] K~a (x.. ----' x~) 
- -  S2 ~ [ N i l  (t - -  1:1) N21 (1:1 - -  "~2) - -  N 5  (t - -  "171) N31 (X l - -  T2)] K~a (x~ - -  %) 

(i = t . . . . .  4) (2.2t) 

W=(t)Here(k Kt~(X~--l, 2, ~) are the correlation functions of the random processes 

Ki j  (~, -- x2) ---- M [W i (x:) W j  (x~)l (i, / ----- t ,  2, 3) (2.22) 

We assume that processes Y~($) are stationary and stationary connected. 
Therefore the correlation functions depend on the difference of the argumeats. 

The variances of the random processes x~ (t) , according to (2.18), will, 
with an accuracy up to terms of second orde~ of smallness, have the following 
form: (2.23) 

t t 

(t) = kZs~' .~ .~ { N  i ,  (t - -  xl)  N ~  (t - -  x~) K n (xx - -  x~) -1- N p  (t - -  xt) N p  (t - -  x , )  × D i  
0 0 

× K ~  (x~ - -  %~) W 2Ni4 (t - -  %) N i l  (t - -  xz) KI~ (x 1 - -  x~)} dx~ dx x (i ---- t . . . . .  4) 

3. As an example, we shall investigate the motion of the gyrocompass 
when W~ (t) (J = l, 2, 3) are stationary processes of the white noise typ.e, 
with zero mathematical expectations 

M [ W  i (t)] = 0 (i ---- i ,  2, 3) (3. i)  

and correlation functions of the form 

K n  (t - -  x) ---- G18 (t - -  x), Kx2 (t - -  T) = 0 (3.2) 

K ~  (t - -  x)  ---- 6 2 5  (t - -  T), K13 (t - -  "0 ---- L 8  (t - -  x) 

K33 (t - -  x) = G36 (t - -  x) ,  K~3 (t - -  x) = 0 

which can take place with vibrations of the instrument base. Here 5(t -- x) 
is a delta function. Note, that the problem of the gyrocompass motion due 
to heaving, determined, for instance, with the relations published by Svesh- 
nikov [4], would require the calculation in the random processes Wj(~) of 
nonlinear terms of the second order relative to the angles of heaving of the 
ship and their derivatives. These nonlinear terms, as demonstrated in the 
paper [43, would by themselves influence the magnitudes of the mathematical 
expectations of the angles, determ~ing the position of the gyrocompass. 

We shall calculate the mathematical expectations M[mj(~)] according to 
(2.2o). Since 

x, i ~ Njk (x I - -  x~) 5 (x I - -  x,) dx2 = -~-Njk (0) 

0 

and the matrix weight function N(~) satisfies the condition N(0)-E ,where 
E is the unit matrix, then, using (3.2), we can write (2.20) as 

t 

M [zj  (t)l -:- ~" ~."-sls2az Ni4 (t - -  xl) dxl  (/----- t . . . . .  4) (3.3) 

0 

Substituting k,  a ,  and sa in (3.3) by  their expressions, we get 
t 

G2 I d~ M [xj ( t ) l - -  2R2U cosq; Ni4 (~) ~ (3.4} 
0 
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Integrating (3.4), we can present the mathematical expectations of the 
angles, determining the position of the gyrocompass, as follows: 

(,, 
,4! [z j  (t) l = 2R~U cos~ A ~  (0 ( i  =- l . . . . .  4) (3.5) 

1 
( T f l ) - ? = - ( 1  ---coso)tt ) - T .  (21-~1 (1 - - c o s ~ z t )  (i----- i, 3) 

A~4 (t) = ~ 1 | - [ (3.~) 

• T (~) - -  sin o)2t ( / = -  2, 4) (- h (' s,,, + j, 

The v a r i a n c e s  o f  t h e  random p r o c e s s e s  x I ( t ) ,  a c c o r d i n g  t o  ( 2 . 2 3 )  and 
(3.2) will be 

Dj (t) = a / , +  bj sin (o h - -  o)2)t i- cj sill 2(o d -F- h i sin 2~%t -~- lj sin (o h + ~o2) t 
( / =  t . . . . .  4) (3.7) 

where 

i i 
a j -=  ~ ,  [GI (,n.~ 2 ¢- n i ~) -~- (A (,hi2 l Jr- nj~)l, b = - -  (to1 __ e2 ) Rz (Gxmjanj, 4- C2rnj,nj, ), 

_ ( - i ) J  o !--~ 2 
cj - -  ~ (C, ,n j ]  - -  C=,nj[), hi  =- ,,(o~/t' (C~n~4 - -  a=nj~) (3.8) 

( - - l )  j 1 l 
lj  - -  ((ol ~ o)~) R 2 ( - -  Glmj~nJ 4 ~- G2mjlnP )' m i k =  --Tex ik (1), nit----- ~ ~ikT (2) (3.9) 

From ( 3 . 5 )  and ( 3 . 7 )  i t  can  be s e e n ,  t h a t  e v e n  i n  t h e  a b s e n c e  o f  i n i t i a l  
d i s p l a c e m e n t s  i . e .  w i t h  x ~ ( O ) - 0  (k = ! ,  . . . .  ~ ) ,  unde r  c o n d i t i o n s  ofheav~_ng 
and s h i p  v i b r a t i o n s ,  a d i s p l a c e m e n t  o f  t h e  a v e r a g e  p o s i t i o n  w i l l  o c c u r  i n  
i n  an undamped g y r o c o m p a s s ;  t h e  m a t h e m a t i c a l  e x p e c ~ a t i o n s  ~ [ x ~ ( t ) ]  have  a 
c o n s t a n t  componen t .  The gy rocompass  p e r f o r m s  undamped q u a s i p e r i o d i c  v i b r a -  
t i o n s  about this displaced position. 

The variances of the angles, determining the position of the gy~'ocompass, 
in addition to periodic components, also contain a component linearly increas- 
InK with time. After a sufficiently long time, the variance of the undamped 
gyrocompass can reach a significant value. 
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