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The paper investigates the motion of a gyrocompass wlth random displacements
of its point of support, which takes place in the rolling of ships, the vibra-
tion of the instrument base and in other cases. Under these conditlons, the
acceleration of the point of support of the gyrocompass represents a random
vector function of time and the motion of the gyrocompass wlll be described
by a system of linear nonhomogeneous differentlal equations with random coef-
flcients and random right-hand sldes, i.e. under these conditlions the gyro-
compass represents a system with random parametric excltation under the action
nf random external forces,

1. In the derivation of the equations of motion of the gyrocompass for
the case under consideration, we shall proceed form the general equations of
motion of a gyrocompass, obtained by Ishlinskii [1], which can be written in
the following form:

2B cos (& — 8) [— (V/R) (sin oy sin v — cosay sin f cos 1) — (o, +- Q) cos B cos 7 —
. -

— B'sin 7] = lm Wy° sina, cos p — lm W,° cosa; cos p — I(mW3® -+ P) sin p— M,

2B cos (& — &) [(V/R) (sin @, cos ¥ -+ cos &, sin P sin 1) — (" + L) cos B sin y -
+ B cosy] = M}* (1.1)

[2B cos (e — 8)] = Im W,° (cosa, cos ¥ — sin e, sin f sin 1) +
-+ lm W,° (sina, cos ¥ 4 cos o, sin f sin 1) — I (mW3° + P) cos B siny -+ M,*

2B sin (¢ — 8) [(V/R) cosa, cos P+ (@ + Q) sinf - 7] =xnsinbcos§ — M *

Above, a dot represents differentiation with respect to time.

Equations (1.1) describe the motion of the gyrocompass relative to a sys-
tem of coordinates g,n,{ , orlented so, that one of the horizontal coordi-
nates (io ~axis) 1s direct:d along the horizontal component ¥ of the abso-
lute ship velocity. The (-axis 1is directed upwards along the radius of the
Earth globe., The coordinates of the axes g, and n, are turned with respect
to the geographic axes £ and n (oriented, respec%ively, towards east and
north) by an angle ¢ , found from

v RU cos ¢ -- v -
sin g = vN ,© €080 = f—*l;——i , V= V(RU cos @ + vp)? + sz (1.2)
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Here, R 1s the distance of the polnt of support of the gyrocompass from
the center of the Earth, U 1s the angular veloclty of the gaily rotation
of the Earth, ¢ 1s the latitude of the poilnt of observation and 1, and
are the eastern and northern components of the relative ship velocity.

Let a,, p and y denote Euler's angles, which determine the position
of the gyrosphere relative to the coordlnate trihedron g,n,{ , a, denote
the angle of rotation of the gyrosphere about axis ( , g the angle of
rotation about the negative direction of x*-axis (nodal line) and v the
angle of rotation about the z-axis rigidly connected to the gyrosphere. Angle
a , the rotation of the gyrocompass in azimuth, consldered relative to the
northern direction, will thus be

Uy

o=y i (1.3)

The Z-axis 1s directed along the bisectrix of the angle, formed by the
axes of the gyroscope rotors, while x and denote axes rigidly connected
to the gyrosphere, x being in the equatoria! plane of thé gyrosphere (i.e.
in the plane formed by the axes of the gyroscope rotors) and y directed
upwards along the normal to the equatorial plane.

Let ¢ — 8 denote the angle between the axis of the rotor of one of the
gyroscopes in the gyrosphere and the g-axis of the gyrosphere., The rotor
axis of the second gyroscope 1s symmetrically placed. The axes of the gyro-
scope casings are interconnected by an antiparallelogram. In the state of
equilibrium, when the gyroscope rotors do not gyrate, the angle between the
rotor axes 1s equal to 2¢ , therefore & represents the angle of precession
of the gyroscopes relative to the gyrosphere.

Let wo°, W,° and #,° be the components of acceleration of the gyrocom-
pass point of support along axes ¢, n% and ( , respectively. In their
determination it must be remembered that in the problem under consideration
oo k0,

The projection of the instantaneous angular velocity of the coordinate
trihedron Eg,n,{ on the (-axis, 1s denoted by 0 , where

7

Q= Using+ p-ung o (1.4)

Let 5 denote the individual kinetic moment of each of the two gyroscopes
installed in the gyrosphere. The coefficlent x in the fourth eguation of
(1.1), determines the stiffness of the springs connecting the gyroscope
casings with the gyrosphere. The quantities m and P represent, respec-
tively, the mass of the gyrosphere with all its internal elements and the
attraction force acting on it, while 1 1s the distance between the center
of gravity of the gyrosphere, situated on y-axis, and its geometric center,
i.e. the point of support of the gyrocompass.

The moments of all the other external forces, not taken into account in
Equations (1.1), about the axes x, y and gz , rigidly connected to the
gyrosphere, are denoted, respectively, by W, %, N, " and N,*, while My *
represents the moment of these forces relative to the axils of the gyrosbope
casing, about which the angle of precession & 18 read.

We shall now modify the system if equations (1.1). The first equation of
(1.1) is multiplied by cosy, the second equation by siny and the two new
equations are added. Further, the first equation of (1.1) 1is multipliled by
— siny, the second by cosy and the equations added again. Substituting
the first two equations of (1.1) by the above two new equations, we get the
equivalent system of equations

2B cos (¢ — &) [(¥/R) cosay sin B — (& + K) cos B] = lm I",° sina, cos B cos T -
—Im W% cosa, cosfcos ¥ — I (m¥T,° + P)sinfcos 7 — M
2D cos (e — 8) ((F/R) sinety + B7) = — Im I1,° sin @, cos P sin 1 =+~
4- Im W,° cosa, cos P sin 1 + 1 (mIV,® + P) sin B sin v + Mu:
[21¢ cos (€ — 8)] = lm W',° (cosay cos 7 — sin e, sin fsin 7) + 1m W,° (sin a; cos ¥ +
-+ cosa, sin B sin 7) — { (m11;° + P) cos Bsiny + M,* .
2B <in (e — 8) [(1/R) cosa, cos B + (@, + Q) sin p + 1] = » sin & cos & — M, (1.5
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where . .
My = M./ *cost— M/*sinv, Mo = M *siny4 Mj*coesy (1.6)
Since the axes x and py are turned relative to x* and y* by an
angg‘.e Y » ,xkneasured counterclockwise from x*-axis it follows from (1.6) tnat
M_.and M , represent the moments of the above mentioned external forces
abolit axes Yx* and y* .

Considering now Equations (1.5) and noting that RU cos o 1s very much
larger than vy and Uy,. we shall substitute (1,2) and (1.4) with the fol~-
lowing approximate relations:

V=~ RU cos g, g=0, @= const, Q= Using (1.7

When the base 1s at rest with respect to the Earth, the acceleration com-

ponents, of the gyrocompass point of support, along axes g, n and { are
V2

Wi°=0, W, =VQ=RUsingcosgp, W;"= — "= RU2cos?2 ¢ (1.8)

It can therefore be assumed, that with random displacements of the gyro-
compass polnt of support

W = Wy W,° = RU?sin @ cos @ + W,, Wy® = — RUZcos? @+ Ws  (1.9)

Here, W, , W, and W, are random processes with zero mathematical expec-
tations.

In normal gyrocompasses, the spring stiffness u 1s several times larger
than in horizontal gyrocompasses., Therefore in gyrocompasses (even with
»,=0) ballistic deviations take place. To minimize them, the parameters
of "the compass are chosen to satlsfy the condition

2B cos (8 — 8*) = Ilm RU cos @ (1.10)

where &* 1s the value of the angle & for the case of the stationary motion
of the gyrocompass, installed on a base fixed with respect to the Earth,

When condition (1.10) is satisfied, according to (1.%), (1.5) and (1.8),
the position of equilibrium of a gyrocompass on a fixed base wilth respect to
the Earth, for the case when Mr* = A{y* = A[z* = Mux* =0, will be given by

o, =pf=v=0, = §* (1.41)

where 6* satisfies the following relation, obtained from the fourth equa-
tion of (1.5)

2B sin (8 — 6%) U cos¢ == x sin 6* cos &* (1.12)

Now, denoting
’ 6, =6 — 6% (1.13)
and restricting the study to small vibrations of the system, about the equi-
librium position, we shall consider angles a,, 8, y and &, to be small.

In this case, keeping only the terms of the first oeder of magnltude, we
obtaln the following relations:

2B cos (¢ — 8) = E, -+ E:8;,

2B cos (g — 8)]'= E.8,° 1.14
2B sin (e — 8) = E, — E,8,, [ (e —OI'= &5, (119
% sin 8 cos § = x sin 8* cos 8* 4- (v cos 28*) 6,
where
8, = 2B cos (& — 0*), E, = 2B sin (e — 0%) (1.15)
Assuming, further, that
P — mRU?cost ¢ = P (1.16)
denoting

IP (Im RU? cos? x cos 26*
v="L, = (m é’;f ) (1.17)
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t()ilo'ce (2], that in normal gyrocompasses . z 5y) and, Introducing new varia-
es

T, = v cos q) al: Ty == Bv T3 =T, Ty = (82/81) v cos q361 (118)

we obtain according to (1.5) the following differential equations, describing
the motion of the gyrocompass with random displacements of its point of support:

dz i 1 1
7 T AT cos g V11— (V2+ " W3) 72t Qua= 7 Wt 4 (1)
dzx 1 dz 2
Trta— (04 grams M) n=n0,  Prom—a -y
dx 1 1 1
F-(0+ g W)+ (4 W)= Fwmitne 0
where
— ..__.1__ * -——-————-——1 ¥
N =g Me™ %) =T RU cos ¢ M
1 1 (1.20)
Ys (0 = — 5 My*, Y= Tmr M

The system (1.19) represents a system of linear differentilal equations
with random coefficlents and random right-hand sides.

2. In the case when, in addition to the forces clearly indlcated in Equa-
tions (1.1), there are no additional external forces applied to the gyroscope
we must assume in Equations (1.1)

M*=M*=M*=M*=0 2.1)
It follows that
y; ) =0 (=1 ...,4
Assuming that conditions (2.1) are satisfied, and denoting by A the
small parameter contained in Equations (1.19) X = R,/R , where R, 1s some
normalizing coefficlent, satisfying, for example, the condition

]I’Vi |max J Ro =1 sec™?

we can express Equations (1.19) in the following form:

ar 20, 4+ Q A (—————-1 2L \ = A 2
@ Vit Gt ME s Wi — g, Weta) =2 g, Wa 2.2)
dl'z 1 d(t. f }"2
@ P nTOn oW =0 gt fm— e =0
2 Gy vy 2 (s ! :
- — Iy P vir, — A RnUcosq)szl_i—;W”xa)z}"E'Wl
We shall write the system (2.2) in matrix form
B = —dy Oz 4 2-3)
Here
0 —2 (4] Q
x 1 0 —Q 0
x, . 2
T = z, | a = 0 Q 0 — %’ @9
T4 —Q 0 v? 0
sW, — s,W, OW 0 SsIz)Va
0 — $1 0
y(t) = 0 0 0 2 ol z (8 = 0
—5, W, 0 52 W3 0 U
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and 1 1
= RUcs¢' TR, (2-3)

From Equation (2.3) we can, in the usual way, obtain the matrix integral
equation
t t
z () =N (t) = (0) + A SN (t — 7)) z (1)) dy — A S N —1)y )z (wdy (26
0 0
where N @) =[Ny @G, k=1,...,4) 1s the matrix welght function for the

homogeneous matrix differentlal equatilon
dx/dt -+ ax = 0 2.7)
Corresponding to the differential equation (2.7), the characteristic
Equatilon 4
Pt (2 p2 202 gt b vt — () @2 Q=0

has two palrs of 1maginary roots

P1y Pp = iy, Py P2 = T 0y
The function ”“(t) in Equatlon (2.6) can be represented as [ 2]
1 1 .
Ny @) = — o Tjk(l) €05 0t -+ e Tjk(z) coswyt  for |+ k= 2m
(2.8)
1 . 1 . .
Ny ()= o T, sin o — o T sinwgt  for j+ k= 2m 41

where m 1s a positlive integral number.
Here ¢ = o, (02 — 0% (s =1, 2), and the functlons Tjk(s) (s =1, 2) are

) = 0l — @2+ Q) o, Tp® = — V22 — QW2 4 phv?

Tonl® = 02 + Qe — p?, Tzz(s) = 0l — @+ o,

T, = (2 + Qi) o, Tu® = Qo2+ Qu>— @°

Ta® = — Qo2 — Qv + @, T, = — 20via,

T = — 2Qvi0,, T = Qo2 + Qp? — Q3

Tl = — Qo2 — Qv 4 @3, T, = — (Q+ Qp*/?) w,

T33(S) =0l — @+ Q) o, T34(S) = — o2uYv? — Q2 4 p*

Ty'® = vio 2 + Q32 — v4, T =08 — (v + Q) o (2.9)

The solution of the matrix integral equation (2.6) can be found by suc~
cessive substitutions [3].

Denoting
t

F @ =N @)=z (0) + A SN ¢ — 1) z (1) dr, (2.10)
1]

we can bring Equation (2.6) to the form
t

) =F @ —A N =)y e @y 2.11)

0
From (2,11) it follows that

s =F@—F{N@—wy@ iy 2.12)
4]
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Substituting into (2.11) the expression (2.12) of x(r,) , we obtain
4 T
()= F()—2A \ N (¢t — 1)y (n){F(y) ‘—15 N (1 — 19) ¥ (1) = (%) d7,] d7y (2.13)
0 0
Substituting x(-r ) into (2.13) with an expresaion analogous to (2.12),
and repeating the deacribed process, we can represent the solution of the
integral equation (2.6) in the form of an absolutely and uniformly converging

series [ 3], which, in the present problem, will be a power series with a
small parameter )\

xm=Fm+2vuo (2.14)
where ¢ ,n_:l:l
L) = (=" A"SS ' N@E—t) N —1)...
00
N@E,,— 1)y (‘tl) cy(v,) Flry)dy ... dt, (2.15)

Restricting ourselves to terms not higher than of second order of small
magnitude, we can represent the solution (2.14) in the form

t t
z () = (N () — A 5 N (¢ — 1) y (r) N(n)dv, + A2 SS ¥ (¢, 7 %) dT, d1,) = (0) +
00 !

1

+- A Nt —1)z(t)dy — A2 Q{t, 7, ) dvo dty (2.16)

Cun ©
Oy ™
Ly 4

where -
YT W=N{t—1)ymN(T— 1)y N ()

QUt, 7 ) =N -1y )N (1 — ) z (%) (2.17)

With zero initial condltions gz, (0)=0(k=1,.-., 4) the elements of the
matrix (2.16) will have the form

50 = As, \ [Ny (¢ — ) Wy (1) + Njy (t — 1) W, (1))] dry —

-]

]
e )‘2 ‘\ QJ (tv Tlv tz) de dTl (] = 1, .« e ey 4) (2.18)
o

where
Q,‘(‘- T, T2) = slszle (t — 1) N (7y — ©) Wy (1) Wy (1) —
— 5 [Nt — 1) Ny (1 — 1)+ Nyt — %) Ny (1, — )] Wy (1) Wy (t) +
T 8N, @ — T Ny (t — o) Wi (h) W, (%) —
— 818 [Nj‘ (t — ) Nu(ty — T) + Ny (¢ — 1) Ny (1, — 15)] Wa (1)) Wa(t) —
— st (N (¢ — 1) Ny (1 — 1) — Ny (8 — 1) Ny (1 — .)] Wy (1) W, (%) —
— 5 (N,-; (t — 1) Noy (7y — ) — Nj‘ t — 1) Ny (v — )] W3 (1) W, (7))
G=1,...,4 (2.19)

Since the mathematical expectations of the random processes ¥, t=1,
2, 3) are equal to zero, we can represent the mathematical expecutiw

the random processes x, {(t) , which determine the position of the momu,
in the following form:

{
Miz;01=—n
o

M{Q, (& Ty, 1)) drydr, G=1...,4% {2.20)

St
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M[Q;(t Ty, )] = si Ny (8 — 7)) Ny (71 — To) Ky (7 — T) —
— 515 [NV (t — 1) Ny (1 — To) 4 Nja (¢ — 11) Nay (11 — T2)] Ko (11 — 72) +
+ 55N (8 — 1) M (11— To) Kpo (1 — T) — 5150 [Vja (¢ — ) Ny (g — W) +
+ N (t — 13) Ny (T3 — 1)) Ky (Ta — 71) —
— 552 [le (t — ) Nog () — To) — Nja (¢t — Ty) Nag (1 — )] K3 (12 — 73) —
— 2 [Nt — 1) Ny (1p — %) ~Njp (t ~ 1) Nap (1y — )] K3 (T2 — 1)
Gi=1,...4 (2.21)

Here K, (-r,— t.) are the correlation functions of the random processes
wk(t) (k - i: 2, 3

K'ij (1.'] - 12) =M [Wi (1.'1) Wj (172)] (i, ]. =1, 2, 3) (222)
We assume that processes W,(t) are stationary and stationary connected.
Therefore the correlation func{’.ions depend on the difference of the arguments.

The varlances of the random processes x,(t) , according to (2.18), will,
with an accuracy up to terms of second order of smallness, have the following

form: (2.23)

t
D; (t) = A%s,? S N — Nt — ) Ky (4 — )+ Npt— 1) Nt — 1) X
0

L T

X Kooty — T) + 2Nt — 7)) Njp (t — ) Ky (1 — )} drp dTy G=1,...,4)
3. As an example, we shall investlgate the motlon of the gyrocompass

when W,(¢) (7 = 1, 2, 3) are stationary processes of the white noise type,
with zero mathematical expectations

Mw;®l=0 (i=12173 3.9

and correlation functions of the form

Knit—7=06S(@~—n) Kipt—1=0 (3.2)
Ky (¢ — 1) = G5 (t — 1), Kypit—7y=L5(t — 1)
Kyt — 1) = Gb (t — 1), Kpt—1=0

which can take place with vibrations of the instrument base. Here &(t — 7)
is a delta function. Note, that the problem of the gyrocompass motion due
to heaving, determined, for instance, with the relations published by Svesh~-
nikov [4], would require the calculation in the random processes w,%t) of
nonlinear terms of the second order relative to the angles of heaving of the
ship and their derivatives. These nonlinear terms, as demonstrated in the
paper (4], would by themselves influence the magnitudes of the mathematical
expectations of the angles, determining the position of the gyrocompass.

We shall calculate the mathematical expectations M x,(t)] according to
(2.20). Since

Ty

1
SNjk (ty — 1) 6 (1, — T) dTp = 2 Vik ©
0

and the matrix weizht function #(¢) satisfies the condition ¥(O)=E, where
E is the unlt matrix, then, using (3.2), we can write (2.20) as
t
1 ‘ .
M [.’I:j ] = —2_}"23132G2 &Njg (t — 1) dty G=1,...,4%) (3.3)
0

Substituting A, 8, and 8, in (3.3) by their expressions, we get
t

C ;
M [z; ()] = m SNj‘ (8) d& 3.4
0



186 L.la. Roitenberg

Integrating {3.4), we can present the mathematical expectations of the
angles, determining the positlon of the gyrocompass, as follows:

y

M Lz )] = 555 1,"265?; As () G=1,...,4 (3.5)
T(U«L 1 -oqu)t)—'*l"(z’~——1 (1 — coswyt) (=1, 3)
i oy (17 005 O 4 ey 2 ! e N
Aj (1) = ) ) (3.6)
R 0 R -
— [‘j4 G sia ot + ]j4 @y sin gt (f 2, 4)

The variances of the random processes x,(t), according to (2.23) and
(3.2) will be

D;(t) = ajt ¥ bjsin (0, — 0y)t + ¢jsin 20,2 -+ hjsin 2042 + jsin (0, + @,) ¢
G=1...,4 37

where
1 2 ) 2 o) 2 2 .______..__1 —
;= g [Gilmg+ ng) + Gy g+l b= — (@, = o) B2 (Grmjnj =+ Gympanjy
(—1)’ . (—1)’
¢j= m—_, (Glmji — G'zmj.;), hj = koo (Glnji — Gznjf) (3.8)
=y : 1o _1re
l; = (@, F o) B2 (— Glln54nj4 -+ szjlnﬂ), mg, = ETVC . N = ?;Tjk 3.9

From (3.5) and (3.7) it can be seen, that even in the absence of initial
displacements i.e. with x,(0)=0 (% = 1,..., 4), under conditions of heaving
and ship vibrations, a displacement of the average positlion wlll occur in
in an undamped gyrocompass; the mathematical expecvations M[x (t)] have a
constant component. The gyrocomp&ss performs undamped quasiperiodic vibra-
tions about this displaced position.

The varlances of the angles, determining the position of the gyrocompass,
in addition to perlodic components, also contain a component linearly lncreas-
ing with time. After a sufficlently long time, the variance of the undamped
gyrocompass can reach a significant value.
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